
Introduction

The anaerobic process is a promising technology that

presents advantages compared to the classical aerobic

treatment: It has a high capacity for degrading concentrat-

ed waste, produces little sludge, and requires relatively

less energy [1-3]. However, in spite of these advantages,

anaerobic treatment plants are still rare at the industrial

scale, especially in developing countries, because they are

known to become easily unstable under some circum-

stances, such as variations occurring in the process operat-

ing conditions and due to the requirement of a high level

of expertise for operation. Nevertheless, these drawbacks

can be overcome by associating feedback control for assur-

ing a stable performance of the wastewater treatment oper-

ation.
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Abstract

The operation of a full-scale up-flow anaerobic sludge blanket (UASB) reactor treating citrus juice

wastewater was observed for two years. The average total chemical oxygen demand (COD) removal efficien-

cy was determined to be equal to 79% and 77%, for the first and second years of operation for this reactor,

respectively. The average volumetric loading rate was equal to 8.1 and 5.7 kg COD/m3day, respectively, dur-

ing these periods. Three artificial neural network (ANN) models, namely feed forward back propagation

(FFBP), radial basis function-based neural networks (RBF), and generalized regression neural networks

(GRNN) were utilized to predict the COD and total suspended solid (TSS) concentrations in the effluent leav-

ing the UASB reactor as well as the biogas production in the reactor. In general, the FFBP model made the

best predictions with an average deviation of about 6.4-15.6% from the experimental values. The predictions

made for biogas production and COD concentration were more accurate, while relatively larger discrepancies

existed for the TSS concentration. The utilization of the ANN models generally provided significant improve-

ments when compared to the use of multilinear regression for the same purpose.

Keywords: artificial neural network models, chemical oxygen demand, citrus juice wastewater, multi-

linear regression, UASB



One of the most popular anaerobic treatment techniques

is the up-flow anaerobic sludge blanket (UASB) process

developed in the 1970s by Lettinga and co-workers in the

Netherlands [4]. Application of the UASB process in the

treatment of municipal and industrial wastewater was wide-

ly reported [5, 6]. Anaerobic digestion of cheese whey

using the UASB reactor was also reported [7, 8].

There is a need to develop methodologies to determine

UASB reactor performance, both for designing more effi-

cient reactors and predicting the performance of the exist-

ing ones under various influent wastewater flow conditions.

Based on qualitative understanding of the UASB process

gained over the years, several attempts were made to devel-

op mechanistic models for quantitative descriptions of

UASB reactor performance [9-13]. 

Mechanistic models may remain insufficient due to sev-

eral shortcomings in the available models. For example, the

models might not be able to represent accurately the sub-

strate availability to methanogenic microorganisms, i.e. the

rate and extent of the formation and composition of volatile

fatty acid in the reactor. The biochemical dynamics in the

reactor have been simplified excessively, resulting in inac-

curate depiction of the population and relative speciation of

methanogenic microorganisms and their substrate utiliza-

tion rates. Additionally, generally simplistic approaches

have been used to explain the effects of biomass retention

time, specific gas production rates of methanogens and

sludge retention mechanisms on reactor performance.

These and other deficiencies in mechanistic model formu-

lation are primarily due to insufficient qualitative under-

standing of the process dynamics in the UASB reactor

under various input conditions, and may only be overcome

through additional empirical observation and analysis of

experimental data on UASB reactor performance [14]. 

It may be useful to apply black-box models such as arti-

ficial neural networks to explain or predict the rather com-

plex operation of a UASB reactor treating wastewater from

industrial or domestic sources under different input condi-

tions. A few studies have been performed related to the

application of neural networks for the operation of UASB

reactors. A neural network model was designed and trained

to predict the steady-state performance of a UASB reactor

treating high-strength (unrefined sugar-based) wastewater

[14]. The model inputs were organic loading rate, hydraulic

retention time, and influent bicarbonate alkalinity. The out-

put variables were one or more of the effluent substrate

concentration, reactor bicarbonate alkalinity, reactor pH,

reactor volatile fatty acid concentration, average gas pro-

duction rate, and percent methane content of the gas. The

simulation results obtained were determined to provide

insights into key variables that were responsible for influ-

encing the working of the UASB reactor under varying

input conditions. In another study, the steady-state perfor-

mance of a granule-based H2-producing UASB reactor was

simulated using a hybrid neural network-genetic model

[15]. Organic loading rate, hydraulic retention time (HRT)

and influent bicarbonate alkalinity were the inputs of the

model, whereas the output variables were one of the H2

concentration, H2 production rate, H2 yield, effluent total

organic carbon, and effluent aqueous products, including

acetate, propionate, butyrate, and valerate. The model

described the daily variations of UASB reactor perfor-

mance and predicted the steady-state reactor performance

at various substrate concentrations and HRTs. In a different

study, biogas production rate was modeled and estimated in

a thermophilic UASB digester [16]. The data set covered a

time period of both steady-state conditions and abnormal

operation conditions, i.e. organic loading shocks.

Multilayer neural network topology was used as the mod-

eling tool and gave encouraging estimation results for the

online control of thermophilic reactors. 

In this study, the operation of an up-flow anaerobic

sludge blanket (UASB) reactor treating citrus juice waste-

water was observed for two years and then was modeled by

three different artificial neural networks (ANNs). The pre-

dictability of the chemical oxygen demand (COD) and total

suspended solid (TSS) concentrations in the effluent leav-

ing the UASB reactor as well as the biogas production in

the reactor was investigated. The results obtained were

compared quantitatively to experimental values as well as

to those determined by using multilinear regression. 

Material and Methods

ANN Models Used

Artificial neural networks are black box models that can

perform an estimation using limited input and output data

patterns. They can model non-linear statistical data by sim-

ulating the structure and/or functional aspects of biological

neural networks. In most cases, ANNs are adaptive systems

that change structure depending on external or internal

information that flows through the network during the

learning phase. In this study, the feed forward back propa-

gation (FFBP), generalized regression neural networks

(GRNN), and radial basis function-based neural networks

(RBF) models were used to relate some parameters in the

UASB reactor to initial properties of the citrus juice influ-

ent. 

Fig. 1 depicts the structure of FFBP neural networks.

The FFBP configuration consists of an input layer, one or

more hidden layers, and an output layer [17]. In a feed for-

ward network, the input quantities are fed to the input

nodes, which in turn pass them on to the hidden layer nodes

after multiplying by weight. A hidden layer node, the func-

tion of which is to intervene between the external input and

the network output, adds up the weighted input received

from each input node, associates it with a bias, and then

passes the result on to the nodes of the next hidden layer or

the output, through a non-linear transfer function. The

learning process works in small iterative steps. The output

is compared to the known-good output, and a mean-squared

error signal is calculated. The error value is then propagat-

ed backward through the network, and small changes are

made to the weights in each layer. The weight changes are
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calculated to reduce the error signal for the case in question.

The cycle is repeated until the overall error value drops

below some pre-determined threshold. The FFBP was

trained using the Marquardt-Levenberg optimization tech-

nique. Different numbers of hidden layer nodes were tried

in this study and the condition that gave the minimum dif-

ference between predicted and experimental values for the

utilization of the validation data set was determined. In the

simulations, the stopping criterion was the number of itera-

tions used. Different numbers of iterations were tested to

determine the value providing the best results. 

A schematic of the GRNN is shown in Fig. 2. The

GRNN method does not require an iterative training proce-

dure but instead estimates any arbitrary function between

input and output vectors, drawing the function estimate

directly from the training data. The GRNN is based on a

standard statistical technique called kernel regression [18].

By definition, the regression of a dependent variable y on

an independent x estimates the most probable value for y,

given x and a training set. The regression method will pro-

duce the estimated value of y, which minimizes the mean-

squared error. The GRNN consists of four layers: input

layer, pattern layer, summation layer, and output layer. The

first layer is fully connected to the second, pattern layer,

where each unit represents a training pattern and its output

is a measure of the distance of the input from the stored pat-

terns. Each pattern layer unit is connected to the two neu-

rons in the summation layer: S-summation neuron and D-

summation neuron. The S-summation neuron computes the

sum of the weighted outputs of the pattern layer while the

D-summation neuron calculates the unweighted outputs of

the pattern neurons. The connection weight between the ith

neuron in the pattern layer and the S-summation neuron is

yi, the target output value corresponding to the ith input pat-

tern. For D-summation neuron, the connection weight is

unity. The output layer merely divides the output of each S-

summation neuron by that of each D-summation neuron. In

this method, the spread σ is a smoothing parameter, the

optimal value of which is often determined experimentally.

In this study, different spreads were tried to find the best

one that gave the minimum difference between predicted

and experimental values for the utilization of the validation

data.  

Fig. 3 depicts the structure of RBF neural networks.

Radial basis functions are powerful techniques for interpo-

lation in multidimensional space. RBF networks were

introduced into the neural network literature as a model

motivated by the locally tuned response observed in bio-

logical neurons. The theoretical basis of the RBF approach

lies in the field of interpolation of multivariate functions

[19]. The interpretation of the RBF method as an artificial

neural network consists of three layers: a layer of input

neurons feeding the feature vectors into the network; a hid-

den layer of RBF neurons, calculating the outcome of the

basis functions; and a layer of output neurons, calculating

a linear combination of the basis functions. The input layer

sends copies of the input variables to each node in the hid-

den layer. The nodes in the hidden layer are each specified

by a transfer function, which transforms the incoming sig-

nals. The network output is given by a linear weighted

summation of the hidden node responses at each node in

the output layer. In this study, the most common RBF func-

tion, i.e. the Gaussian, was employed. Different numbers

of hidden layer neurons and spread constants were tried.

The hidden layer neuron number that gave the minimum

difference between predicted and experimental values for

the utilization of the validation data was determined. The

spread that gave the minimum relative error was also

found simply by a trial-error approach adding some loops

on program codes.
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Experimental Study

The important characteristics of the fruit juice industry

effluents used in this study were:

(1) high COD concentration

(2) deficiency in nitrogen and phosphorus 

(3) high acidity with little buffering capacity 

Based on filtered samples, the COD of the fruit juice

effluent was 80-90%. The characteristics of the citrus juice

wastewater and specifications of the full-scale UASB reac-

tor used in this study are listed in Table 1. 

Diameter and height of the full-scale reactor were 16 m

and 7 m respectively, and it had a total volume of 1,407 m3.

Constant hydraulic feed to the reactor is important in order

to maintain a constant up flow. Constant flow and steady

hydraulic conditions further purification was achieved by

keeping a recirculation rate of 25-100% according to the

influent flow. Temperature in the reactors was maintained at

35ºC. 

The UASB reactor we used consisted of a main body

and the settling zone. All the biological processes took place

in the main body filled with sludge that did not contain air.

This section was well mixed, owing to the upward flow of

the wastewater and the presence of the gas formed during

refinement. The settling zone located at the top of the reac-

tor contained a special gas-liquid-solid separator. As the gas

bubbles formed in the main body moved upward, some

sludge also drifted with them. The gas bubbles, separated

from the liquid and solid phases under the funnel, which was

placed upside down in the settling zone, left the system

through the gas line. In the same while, the freed sludge par-

ticles returned to the main body. Similarly, some amount of

sludge that drifted by the hydraulic flow inside the reactor

settled on the outer side of the funnel and reentered the main

body. The feed into the reactor was made from the base. As

a result of the mixing of the sludge bed, the wastewater-

sludge contact was assured, which increased the wastewater

treatment efficiency of the system.

In order to compensate the deficiency of nitrogen and

phosphorus in the citrus juice wastewater, NH4Cl and

K2PO4 were added as nutrients to the wastewater, provided

that the COD/N/P ratio was equal to 300/5/1. Additionally,

NaHCO3 was added regularly to provide sufficient alkalin-

ity in the reactor. All the analyses were performed in accor-

dance with Standard Methods [20]. 

Method of Estimation

In this study, experimental data pertaining to the UASB

reactor operation were utilized in the predictions performed

by the FFBP, GRNN, and RBF models. The components of

the input vector were flow (m3/day), volumetric load

(kg/m3), and CODin (mg/l), as well as TSSin (mg/l) concen-

trations in the influent, while the components of the output

vector were CODout and TSSout concentrations of the efflu-

ent as well as biogas production (m3/h). 

The application of the ANNs to data consisted of two

steps. The first step was the training of the neural networks,

including the presentation of training data describing the

input and output to the network and obtaining the inter-con-

nection weights. The input and output data were normalized

between 0 and 1 prior to training. After the completion of

the training stage, the ANNs were applied to the validation

data. The network structure providing the best result was

determined according to the success of the predictions per-

formed using the validation data set. The ANNs were used

to predict only one component of the output vector at a

time. Data set 1 (105 data) was used for training the neur-

al networks while data set 2 (8 data) was used for valida-

tion. The ranges of values used in the training data were

equal to 20-6690 mg/l, 72-2080 mg/l, and 543-14317 m3/h

for CODout, TSSout, and biogas production, respectively,

while those in the validation data were 1430-2026 mg/l,

140-930 mg/l, and 2078-6489 m3/h, respectively, for the

same parameters. The validation data were selected in a

manner assuring that they remain within the maximum and

minimum limits of the training data. It was also observed

that when different validation data were utilized, the suc-

cess of the predictions did not change significantly in this

study.

The results obtained by using the FFBP, GRNN, and

RBF models were compared to the actual values as well as

to the values estimated by using multilinear regression. The

regression model utilized in this study was of simple linear

form, as given below. R might represent CODout, TSSout, or

biogas production. 

R = a0 + a1(CODin) + a2(TSSin) + a3(flow) +    
(1)

a4(volumetric load) 

The coefficients in Eq. (1) were determined by using the

Marquardt-Levenberg algorithm.
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Table 1. Characteristics of the citrus juice wastewater and spec-

ifications of UASB reactor used in this study.

Component Value

Chemical oxygen demand, CODin (mg/L) 2790-14680

Chemical oxygen demand, CODout (mg/L) 20-6690

CODremoval (%) 16-100

Total Kjeldahl nitrogen, TKN (mg/L) 80-100

Total phosphorus, TP (mg/L) 12-20

Total suspended solids, TSSin (mg/L) 150-1750

Total suspended solids, TSSout (mg/L) 30-420

Volumetric loading rate (kg COD/m3day) 0.9-27.4

Biogas production (m3/day) 880-11000

Flow (m3/day) 850-1750

Retention time in reactor (h) 28-56

Net sludge production (kg/day) 102-610 



The relative error (d) was used to monitor the success of

the ANN models and regression used in the prediction of

CODout, TSSout, and biogas production. d was determined

by taking into consideration the deviation (%) of these para-

meters, calculated by using the ANNs or regression (ccalc),

from the corresponding actual values (cact). 

dm= ⏐cact-ccalc⏐/ cact × 100 (2)

...where: dm was defined as the arithmetic mean of the rela-

tive errors obtained for the different data used in prediction. 

Results and Discussion

Full-Scale Experiments and UASB Reactor

Performance Data

In this study, the full-scale UASB reactor treating citrus

juice wastewater was investigated for two years. The citrus

juicing season of the food processing plant was typically

from November to June and the off-season was from July

to November. Figs. 4 and 5 illustrate the variations of the

influent and effluent COD concentrations, the related COD
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Table 2. Characteristics of the citrus juice wastewater treated in the UASB reactor.

First year Second year

Min Max Average Std. Dev. Min Max Average Std. Dev.

CODin (mg/L) 2790 12170 6948 1878 3470 13270 6767 2436

CODout (mg/L) 20 6690 1469 1065 227 2640 1428 496

CODremoval (%) 16 100 79.2 14 57 93 76.9 8.9

Volumetric loading rate 

(kg COD/m3day)
1.8 21.9 8.7 5.2 0.9 9.7 5.7 2.4

Fig. 4. Influent and effluent COD concentration and related COD removal efficiency in the full-scale reactor during the first year of

operation.

Fig. 5. Volumetric loading rate and related COD removal efficiency in the full-scale reactor during the first year of operation.
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removal efficiency performance and the volumetric loading

rate of the UASB reactor with time for the first year of oper-

ation. Figs. 6 and 7 depict the same variations for the sec-

ond year of operation. Table 2 summarizes the concentra-

tions of influent and effluent COD and the reactor perfor-

mance during the two-year period. The reactor was operat-

ed for seven months during the first year but only for four

months during the second year. It is well known that the

start-up period is critical for the anaerobic treatment

processes. As seen in the figures, however, the UASB reac-

tor recovered very fast after the off-season for both years.

For the first year, COD removal efficiency was over 50%

while the volumetric loading rate was as high as 15 kg

COD/m3day during the start-up period. The COD removal

efficiency reached to over 80% in a month. The average

removal efficiency and loading rate were 79% and 8.1 kg

COD/m3day, respectively. For the second year, the loading

rates during the working period were lower compared to

those in the first year. COD removal efficiency was

observed to be equal to 57-93% during the second year. The

average removal efficiency was 77% while the average

loading rate was 5.7 kg COD/m3day.

Criteria Assuring Best Performance 

for the ANN Models

The FFBP, GRNN, and RBF models were used to relate

CODout, TSSout, and biogas production to flow, volumetric

load, CODin, and TSSin during the two-year operation of the

UASB reactor. The prediction of CODout, TSSout and biogas

production in data set 2 was performed using the three dif-

ferent ANNs mentioned above, and data set 1 for training.

As mentioned before, the network structure providing the

best result was determined according to the success of the

predictions performed using the validation data. It was also

established that the conditions providing the best results in

the testing stage could allow the ANN methods to exhibit

quite high performances in the training stage. 

In this study, one hidden layer was found adequate for

FFBP simulations. For this method, 150 iterations and 3 hid-

den layer nodes were the conditions determined to give the

best results in both cases. The random weight assignment at

the beginning of each training simulation was different. For

the GRNN method, spread factors in the range 0.02-0.22

were the conditions determined to give the best results. 
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Fig. 6. Influent and effluent COD concentrations and the related COD removal efficiency in the full-scale reactor during the second

year of operation.

Fig. 7. Volumetric loading rate and related COD removal efficiency in the full-scale reactor during the second year of operation.
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The spread factor was determined to be equal to 0.22, 0.02,

and 0.085 for CODout, TSSout, and biogas production,

respectively, by using validation data set 2 for optimization.

The training of the neural networks was carried out by

using data set 1. For the RBF method, spreads in the range

0.125-0.565 and 15 neurons were the conditions deter-

mined to give the best results. The spread was determined

to be equal to 0.125, 0.225 and 0.565 for CODout, TSSout,

and biogas production, respectively, by using the validation

data set 2 for optimization. When the optimization was per-

formed using training data, without taking into considera-

tion validation data, the dm values, representing the devia-

tion of the predicted values of data set 1 or data set 2 from

actual values, were less than 10% for all the cases investi-

gated. When the ANN parameters were optimized using

data set 2, the predictive power of the ANN methods was

not reduced significantly.

Evaluation of the Predictions Made 

by the ANN Methods 

The results obtained by the ANNs for the prediction of

CODout, TSSout, and biogas production are depicted in Figs. 8,

9, and 10, respectively. The actual experimental values are

also given in the figures. It may be observed from the figures

that the ANN methods provided quite good fits in some

cases, while they were less successful in some others. The

results may be observed more clearly from Table 3, where the

average deviation values obtained by using the ANNs from

experimental data are presented. The performances exhibited

by multilinear regression may also be seen in this table. 

In general, the FFBP method was utilized quite suc-

cessfully to predict the CODout, TSSout, and biogas produc-

tion from the experimental training data. This method pro-

vided less deviation from the actual experimental values.

Additionally, the predictions made for biogas production

and CODout were more accurate, while relatively larger dis-

crepancies existed for the TSSout values. The average rela-

tive error in CODout prediction, in the best case, was equal

to 8.9%, as obtained by using both the GRNN and FFBP

methods. For the prediction of TSSout, the smallest average

relative error (amounting to 15.6%) was obtained by far, by

using the FFBP method. The smallest average relative error

(6.4% for the prediction of biogas production) also was

obtained by the FFBP method. 

When multilinear regression was utilized, the average

deviation from the actual values was higher than those pro-

vided by the ANN models tested with one exception: the

prediction of CODout by RBF. The average relative error

was equal to 9.7, 66.0, and 67.2 for the prediction of

CODout, TSSout, and biogas production, respectively, when
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performed using different methods.

dm (%)

Method CODout TSSout Biogas production

GRNN 8.9 44.6 12.2

RBF 11.8 46.1 6.7

FFBP 8.9 15.6 6.4

Regression 9.7 67.2 66.0

Fig. 8. CODout predictions by (ο) GRNN, (+) RBF, and (×)

FFBP models, in comparison to (�) experimental results.
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Fig. 9. TSSout predictions by (ο) GRNN, (+) RBF, and (×) FFBP

models, in comparison to (�) experimental results.
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multilinear regression was utilized. It may be deduced from

these results that the best improvement provided by the

ANNs over regression was in the prediction of biogas pro-

duction. The results obtained using multilinear regression

and ANNs were the closest in CODout prediction.   

Conclusions

Average COD removal efficiencies of about 79% and

77% were obtained during the first and second year of oper-

ation, respectively, when a UASB reactor was used in the

treatment of citrus juice wastewater. The average volumet-

ric loading rate was equal to 8.1 and 5.7 kg COD/m3day,

respectively, during these periods of time. It was shown in

this study that information might be gained about the sig-

nificant parameters related to the operation of the USB

reactor by using artificial neural network models. The

FFBP, GRNN, and RBF models generally provided quite

better predictions than multilinear regression for this pur-

pose. The FFBP generally had the highest predictive power

for the CODout, TSSout and biogas production parameters

investigated. The best prediction was made for biogas pro-

duction, which also provided quite a significant improve-

ment over multilinear regression. The few other studies in

the literature using neural network models for the model-

ling of a UASB reactor had also exhibited similar promis-

ing results. Especially, the prediction of biogas production

rate seems to be closely estimated by these models.

The superiority of the ANNs over conventional methods

for the prediction of complex and high dimensional relation-

ships, such as the one investigated in this study, might be

attributed to the capability of the ANNs to capture the nonlin-

ear features and generalize the structure of the whole data set. 

Artificial neural network methods may be used as a

means of modelling the operation of UASB reactors for dif-

ferent conditions. Pattern recognition may be performed to

determine unknown output parameters for different reactor

input data. In case training data in addition to those adopt-

ed in this study are used with ANN models to make the pre-

dictions, the relative success of prediction might improve. 
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